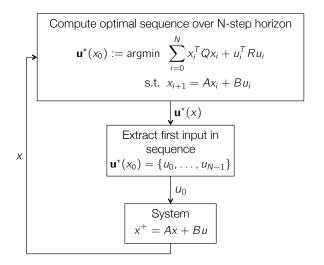
Model Predictive Control

Lecture: Introduction to Convex Optimization

Colin Jones

Laboratoire d'Automatique, EPFL

Recall: Receding Horizon Control



For unconstrained systems, this is a **constant linear controller** However, can extend this concept to much more complex systems (MPC)

What's the Prediction For?

Horizon provides a tradeoff between short-term and long-term benefits.

Infinite-horizon:

- Cost is finite only if the system is stable
- Minimizing infinite-horizon prediction stabilizes the system

Cannot consider infinite-horizons when solving an optimization problem

• We will 'fake' infinite-horizon when solving MPC problems

Linear Quadratic Regulator

$$V^*(x_0) := \min_{\mathbf{u}} \sum_{k=0}^{\infty} x_k^T Q x_k + u_k^T R u_k \quad \text{s.t. } x_{k+1} = A x_k + B u_k$$

Can solve the infinite-horizon predictive control problem in closed-form:

$$P = Q + A^T PA - A^T PB(R + B^T PB)^{-1}B^T PA$$

The optimal input is the constant state feedback

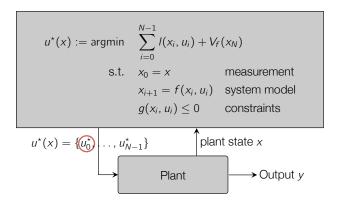
$$u = Kx$$
 $K = -(R + B^T PB)^{-1}B^T PA$

The optimal cost function $V^*(x) = x^T P x$ is a Lyapunov function for the closed-loop system $x^+ = (A + BK)x$.

Outline

- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

MPC: Optimization in the loop



At each sample time:

- Measure /estimate current state
- \bullet Find the optimal input sequence for the entire planning window ${\it N}$
- Implement only the first control action

Optimization Problems arising in MPC

Linear Systems

- Linear system dynamics
- Continuous set of states and inputs, e.g.,

$$x \in [x_{\min}, x_{\max}], u \in [u_{\min}, u_{\max}]$$

• Example: Chemical processes

Nonlinear Systems

- Nonlinear system dynamics
- Continuous set of states and inputs, e.g.,

$$x \in [x_{\min}, x_{\max}], u \in [u_{\min}, u_{\max}]$$

Example: Kites

Hybrid Systems

• Mixed dynamics that are both continuous and discrete, e.g.

$$\begin{cases} x_{k+1} = -c_1 & x_k \ge x_{\text{max}} \\ x_{k+1} = c_2 - c_1 & x_k < x_{\text{max}} \end{cases}$$

- Continuous set of states and inputs
- Example: Walking robot

Discrete Decision Variables

- Inputs and/or states can only take discrete values, e.g.
 u ∈ {1, 2, 3, 4, 5}
- Example: Internet

Outline

- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

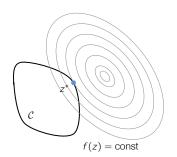
Mathematical Optimization

Mathematical optimization problem is generally formulated as

minimize
$$f(z)$$

s.t. $g_i(z) \le 0$, $i = 1, ..., m$
 $h_i(z) = 0$, $i = 1, ..., p$

- $z = [z_1, ..., z_n]$: optimization variables
- $f: \mathbb{R}^n \to \mathbb{R}$: objective or cost function
- $g: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$: inequality constraint functions
- $h: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$: equality constraint functions
- z is feasible or admissible if it satisfies the constraints
- $C := \{z \mid g_i(z) \le 0, i = 1, ..., m, h_i(z) = 0, i = 1, ..., p\}$: set of feasible or admissible decisions, or **feasible set**



Optimality

Optimal value: smallest possible cost

$$p^* \triangleq \inf \{ f(z) \mid g_i(z) \leq 0 \mid i = 1, ..., m, h_i(z) = 0, i = 1, ..., p \}$$

Optimizer: feasible z that achieves smallest cost p^* , i.e., $z^* \in \mathcal{C}$ with $p^* = f(z^*)$; set of all optimizers is denoted by Z_{opt} (optimizer is not always unique).

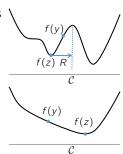
• $z \in \mathcal{C}$ is **locally optimal** if, for some R > 0, it satisfies

$$y \in C$$
, $||y - z|| \le R \Rightarrow f(y) \ge f(z)$

• $z \in C$ is **globally optimal** if it satisfies

$$y \in \mathcal{C} \Rightarrow f(y) \geq f(z)$$

- If $p^* = -\infty$ the problem is **unbounded below**
- If C is empty, then the problem is said to be infeasible (convention: p* = ∞)
- If m = p = 0 the problem is said to be **unconstrained**



Solving nonlinear optimization problems

Traditional techniques for general nonconvex problems involve compromises, e.g., very long computation time, or not always finding the solution:

Local optimization methods

Find a point that minimizes f among feasible points near it

- Fast, can handle large problems
- Requires initial guess
- Provides no information about distance to (global) optimum

Global optimization methods

Find the (global) solution

· Worst-case complexity grows exponentially with problem size

Exceptions

Certain problem classes can be solved efficiently and reliably: e.g. **convex optimization problems**

Outline

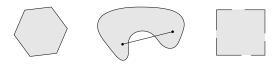
- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

Convex Sets

Convex set: A set $S \in \mathbb{R}^s$ is **convex** if

$$\lambda z_1 + \big(1-\lambda\big)z_2 \in S \text{ for all } z_1, z_2 \in S, \lambda \in [0,1]$$

i.e convex set contains line segment between any two points in the set Examples: one convex, two non-convex sets

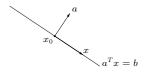


Convex combination of z_1, \ldots, z_k : Any point z of the form

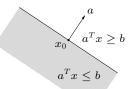
$$z = \theta_1 z_1 + \theta_2 z_2 + \ldots + \theta_k z_k$$
 with $\theta_1 + \ldots + \theta_k = 1, \theta_i \ge 0$

Convex sets: Hyperplanes and Halfspaces

• **Hyperplane:** Set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$



• **Halfspace:** Set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$



- Useful representation: $\{x \mid a^T(x x_0) \le 0\}$ a is normal vector, x_0 lies on the boundary
- Hyperplanes are affine and convex, halfspaces are convex

Convex sets: Polyhedra

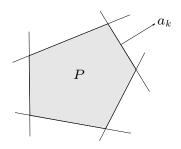
Polyhedron

A **polyhedron** is the intersection of a finite number of halfspaces.

$$P := \{x \mid a_i^T x \le b_i, i = 1, ..., n\}$$

A **polytope** is a bounded polyhedron.

Often written as $P := \{x \mid Ax \leq b\}$, for matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, where the inequality is understood row-wise.



Convex function: Definition

Convex function:

A function $f: S \to \mathbb{R}$ is convex if S is convex and

$$f(\lambda z_1 + (1 - \lambda)z_2) \le \lambda f(z_1) + (1 - \lambda)f(z_2)$$

for all $z_1, z_2 \in S, \lambda \in [0, 1]$

• A function $f: S \to \mathbb{R}$ is **strictly convex** if S is convex and

$$f(\lambda z_1 + (1 - \lambda)z_2) < \lambda f(z_1) + (1 - \lambda)f(z_2)$$

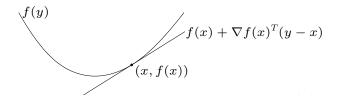
for all $z_1, z_2 \in S, \lambda \in (0, 1)$

• A function $f: S \to \mathbb{R}$ is **concave** if S is convex and -f is convex.

First and second order condition for convexity

First-order condition: Differentiable *f* with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \text{dom } f$



 \rightarrow First-order approximation of f is global underestimator

Second-order condition: Twice differentiable f with convex domain convex iff

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{dom} f$

Convex functions—Examples

Examples on \mathbb{R} :

- Exponential: e^{ax} , for any $a \in \mathbb{R}$
- Powers: x^a on \mathbb{R}_+ for $a \ge 1$ or $a \le 0$ (otherwise concave)
- Logarithm: $-\log x$ on \mathbb{R}_+

Examples on \mathbb{R}^n :

- Affine function: $f(x) = a^T x + b$
- Norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$

Convex optimization problem

Convex optimization problem in standard form

min
$$f(z)$$

s.t. $g_i(z) \le 0$, $i = 1, ..., m$
 $c_i^T z = b_i$, $i = 1, ..., p$

- f, g_1, \ldots, g_m are convex
- equality constraints are affine

often rewritten as

min
$$f(z)$$

s.t. $g(z) \le 0$
 $Cz = b$

where $C \in \mathbb{R}^{p \times n}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$.

Important property: Feasible set of a convex optimization problem is convex.

Local and global optimality in convex optimization

Lemma: Convex problems: Local optima are global optima

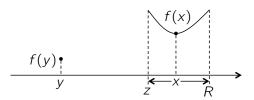
Any locally optimal point of a convex problem is globally optimal.

Proof:

Assume x locally optimal and a feasible y such f(y) < f(x).

x locally optimal implies that there exists an R > 0 such that

$$||z - x||_2 \le R \Rightarrow f(z) \ge f(x)$$



Local and global optimality in convex optimization

Lemma: Convex problems: Local optima are global optima

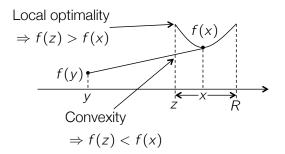
Any locally optimal point of a convex problem is globally optimal.

Proof:

Assume x locally optimal and a feasible y such f(y) < f(x).

x locally optimal implies that there exists an R > 0 such that

$$||z - x||_2 \le R \Rightarrow f(z) \ge f(x)$$



Recap: Convex optimization

- Convex optimization problem:
 - Convex cost function
 - Convex inequality constraints
 - Affine equality constraints
- Benefit of convex problems: Local = Global optimality
- Only need to find one minimum, it is the global minimum!
- Convex optimization problems can be solved efficiently

Outline

- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

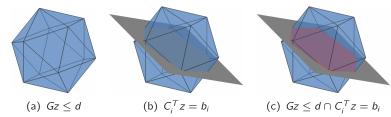
Linear Program (LP)

$$min c^{T}z$$
s.t. $Gz \le d$

$$Cz = b$$

where $z \in \mathbb{R}^n$.

- Convex optimization problem with affine objective and constraint functions
- Feasible set P is a polyhedron

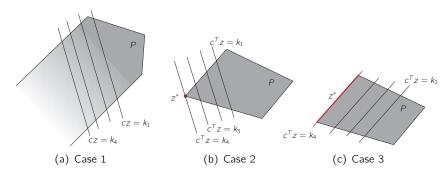


• If P is empty, then the problem is infeasible

Graphical Interpretation and Solutions Properties

Denote by p^* the optimal value and by Z_{opt} the set of optimizers

- **Case 1.** The LP solution is unbounded, i.e., $p^* = -\infty$.
- **Case 2.** The LP solution is bounded, i.e., $p^* > -\infty$ and the optimizer is unique. Z_{opt} is a singleton.
- **Case 3.** The LP solution is bounded and there are multiple optima. Z_{opt} is a subset of \mathbb{R}^s , which can be bounded or unbounded.



Quadratic program (QP)

$$\min \frac{1}{2}z^{T}Hz + q^{T}z + r$$
s.t. $Gz \le d$

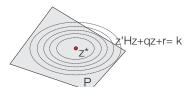
$$Cz = b$$

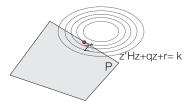
where $z \in \mathbb{R}^n$. $H \in \mathbb{R}^{n \times n}$.

- Convex if $H \succeq 0$ (hard problem if $H \not\succeq 0$)
- Let P be the feasible set.

Two cases can occur if P is not empty:

- Case 1. The optimizer lies strictly inside the feasible polyhedron
 - Case 2. The optimizer lies on the boundary of the feasible polyhedron





Standard optimization problems in MPC

Most common MPC problems based on

- Linear system model
- Linear constraints
- Linear norm or quadratic cost
- \rightarrow Result in linear or quadratic programs

Linear norm vs. quadratic cost:

Linear norm \rightarrow LP:

- Very easy to solve
- Possibly non-unique solutions
- Minimize 'quantity' of something
- Far away from origin: slow action
- Close to the origin: a lot of action, jumping, dead-beat and nervous behavior

Quadratic \rightarrow QP:

- More comp. effort (still easy)
- Unique solution
- Energy arguments
- Relation to LQ control
- Far away from origin: a lot of action
- Close to the origin: smooth action

Outline

- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

Constrained Minimization Problem

Consider the following problem with inequality constraints

min
$$f(z)$$

s.t. $g_i(z) \le 0, i = 1, ..., m$

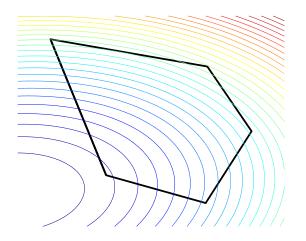
- f, g_i convex, twice continuously differentiable
- We assume p^* is finite and attained
- We assume problem is strictly feasible: there exists a \tilde{z} with

$$\tilde{z} \in \text{domain of } f, \quad g_i(\tilde{z}) < 0, i = 1, \dots, m$$

Idea: There exist many methods for unconstrained minimization

⇒ Reformulate problem as an unconstrained problem

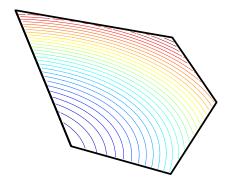
Graphical Illustration



Optimize a function over a set

Graphical Illustration

Define function as ∞ if constraints violated.



Optimize a function over \mathbb{R}^n

Barrier method

$$\min_{z} f(z) + \kappa \phi(z)$$

Reformulate via indicator function:

$$\phi(z) = \sum_{i=1}^{m} I_{-}(g_i(z)), \quad \kappa = 1$$

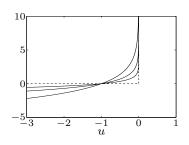
where $I_{-}(u) = 0$ if $u \leq 0$ and $I_{-} = \infty$ otherwise (indicator function of \mathbb{R}_{-})

Augmented cost is not differentiable

Approximation via logarithmic barrier:

$$\phi(z) = -\sum_{i=1}^{m} \log(-g_i(z))$$

- For $\kappa > 0$ smooth approximation of indicator function
- Approximation improves as $\kappa \to 0$



Logarithmic Barrier Function

$$\phi(z) = -\sum_{i=1}^{m} log(-g_i(z)),$$
 domain $\phi = \{z \mid g_1(z) \le 0, \dots, g_m(z) \le 0\}$

- · Convex, smooth on its domain
- $\phi(z) \to \infty$ as z approaches boundary of domain and of the inequality constraints
- $argmin_z\phi(z)$ is called **analytic center** of inequalities $g_1<0,\ldots,g_m<0$
- Twice continously differentiable with derivatives

$$\nabla \phi(z) = \sum_{i=1}^{m} \frac{1}{-g_i(z)} \nabla g_i(z)$$

$$\nabla^2 \phi(z) = \sum_{i=1}^{m} \frac{1}{g_i(z)^2} \nabla g_i(z) \nabla g_i(z)^{\mathsf{T}} + \frac{1}{-g_i(z)} \nabla^2 g_i(z)$$

Central Path

• Define $z^*(\kappa)$ as the solution of

$$\min_{z} f(z) + \kappa \phi(z)$$

(assume minimizer exists and is unique for each $\kappa > 0$)

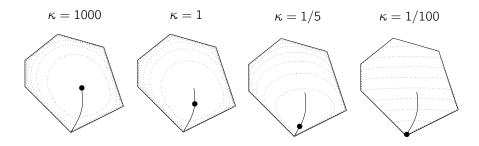
- Barrier parameter κ determines relative weight of objective and barrier
- Barrier 'traps' $z(\kappa)$ in strictly feasible set
- **Central path** is defined as $\{z^*(\kappa) \mid \kappa > 0\}$
- For given κ can compute $z^*(\kappa)$ by solving smooth unconstrained minimization problem
- Intuitively $z^*(\kappa)$ converges to optimal solution as $\kappa \to 0$

Example: Central path for an LP

min
$$c^T z$$

s.t. $a_i^T x \le b_i, i = 1, ..., 6$

 $x \in \mathbb{R}^2$, c points up



Path-following Method

Idea: Follow central path to the optimal solution

Solve sequence of smooth unconstrained problems:

$$z^*(\kappa) = \operatorname{argmin}_z f(z) + \kappa \phi(z)$$

- Assume current solution is on the central path $z^{(k)} = z^*(\kappa^{(k)})$
- Update $\kappa^{(k+1)}$ by decreasing $\kappa^{(k)}$ by some amount
- Solve for $z^*(\kappa^{(k+1)})$ starting from $z^*(\kappa^{(k)})$
- If method converges, it converges to the optimal solution, i.e., $z^{(k)} \to z^*$ for $\kappa \to 0$

Barrier Interior-point Method

$$\min_{z} \{ f(z) \mid g(z) \le 0 \}$$

Input: strictly feasible z, $\kappa := \kappa^{(0)}$, $0 < \mu < 1$, tolerance $\epsilon > 0$ repeat

- 1. Centering step: Compute $z^*(\kappa)$ by minimizing $f(z) + \kappa \phi(z)$ starting from z
- 2. Update $z := z^*(\kappa)$
- 3. Stopping criterion: Stop if $m\kappa < \epsilon$
- 4. Decrease barrier parameter: $\kappa := \mu \kappa$
- Several heuristics for choice of $\kappa^{(0)}$ and other parameters¹
- Terminates with $f(z^*) p^* \le \epsilon$
- Steps 1-4 represent one outer iteration
- Step 1: Solve unconstrained minimization problem

¹More details in Convex Optimization, S. Boyd and L. Vandenberghe

Barrier Interior-point Method

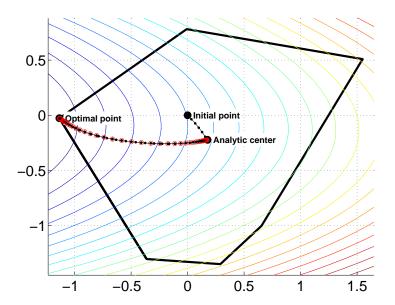
$$\min_{z} \{ f(z) \mid g(z) \le 0 \}$$

Input: strictly feasible z, $\kappa := \kappa^{(0)}$, $0 < \mu < 1$, tolerance $\epsilon > 0$ repeat

- 1. Centering step: Compute $z^*(\kappa)$ by minimizing $f(z) + \kappa \phi(z)$ starting from z
- 2. Update $z := z^*(\kappa)$
- 3. Stopping criterion: Stop if $m\kappa < \epsilon$
- 4. Decrease barrier parameter: $\kappa := \mu \kappa$
- Several heuristics for choice of $\kappa^{(0)}$ and other parameters¹
- Terminates with $f(z^*) p^* \le \epsilon$
- Steps 1-4 represent one outer iteration
- Step 1: Solve unconstrained minimization problem

¹More details in Convex Optimization, S. Boyd and L. Vandenberghe

Example - Quadratic Program



Outline

- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

Optimality Conditions for Unconstrained Problems

Consider the unconstrained optimization problem

$$\min_{z} \ f(z) \quad \text{ with } f: \mathbb{R}^{z} \to \mathbb{R}$$

Optimality Conditions for Unconstrained Problems

Consider the unconstrained optimization problem

$$\min_{z} f(z)$$
 with $f: \mathbb{R}^{z} \to \mathbb{R}$

Theorem: Necessary condition

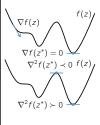
Assume $f(\cdot)$ differentiable at z^* . If z^* is a local minimizer, then $\nabla f(z^*) = 0$.

Theorem: Sufficient condition

Assume that $f(\cdot)$ is twice differentiable at z^* . If $\nabla f(z^*) = 0$ and the Hessian of f(z) at z^* is positive definite, i.e. $\nabla^2 f(z^*) \succ 0$, then z^* is a local minimizer.

Theorem: Necessary and sufficient condition

Assume $f(\cdot)$ differentiable at z^* . If f is convex, then z^* is a global minimizer if and only if $\nabla f(z^*) = 0$.



For more details and proofs see, e.g., M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming Theory and Algorithms. John Wiley & Sons, Inc., New York, 1993.

Unconstrained Minimization

$$\min_{z} f(z) \quad \text{with } f: \mathbb{R}^{z} \to \mathbb{R}$$

- f convex, twice continuously differentiable
- We assume optimal value $p^* = \min_z f(z)$ is attained (and finite)

Unconstrained minimization methods

• Generate sequence of points $z^{(k)}$ in domain of f with

$$f(z^{(k)}) \to p^*$$
 for $k \to \infty$

• Can be interpreted as iterative methods for solving optimality condition

$$\nabla f(z^*) = 0$$

(nonlinear set of equations, usually no analytical solution)

Descent Methods

$$z^{(k+1)} = z^{(k)} + t^{(k)} \Delta z^{(k)}$$
 with $f(z^{(k+1)}) < f(z^{(k)})$

- Δz is the **step** or **search direction**
- t is the step size or step length
- $f(z^{(k+1)}) < f(z^{(k)})$, i.e., Δz is a descent direction
- There exists a t > 0 such that $f(z^{(k+1)}) < f(z^{(k)})$ if $\nabla f(z)^T \Delta z < 0$

Descent Methods

$$z^{(k+1)} = z^{(k)} + t^{(k)} \Delta z^{(k)}$$
 with $f(z^{(k+1)}) < f(z^{(k)})$

- Δz is the **step** or **search direction**
- t is the step size or step length
- $f(z^{(k+1)}) < f(z^{(k)})$, i.e., Δz is a descent direction
- There exists a t > 0 such that $f(z^{(k+1)}) < f(z^{(k)})$ if $\nabla f(z)^T \Delta z < 0$

General descent method:

Input: starting point $z \in \text{domain of } f$ repeat

- 1. Compute a descent direction Δz
- 2. Line search: Choose step size t > 0 such that $f(z + t\Delta z) < f(z)$
- 3. Update $z := z + t\Delta z$ **until** stopping criterion is satisfied

Descent Directions

Lots of ways to choose descent directions:

• Gradient descent: $\Delta z := -\nabla f(z)$

$$\nabla f(z)^T \Delta z = -\nabla f(z)^T \nabla f(z) = -\|\nabla f(z)\| < 0$$

Tends to be too aggressive (zig-zagging).

- Direction as function of several previous gradients:
 - Conjugate gradient method
 - Fast gradient method

Much better, but still limited

• Best: Newton method

$$\Delta z = -\nabla^2 f(z)^{-1} \nabla f(z)$$

Cost: Must invert the Hessian

Newton's Method

$$\Delta z_{nt} = -\nabla^2 f(z)^{-1} \nabla f(z)$$

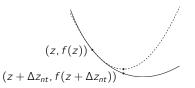
• Interpretation: $z + \Delta z_{nt}$ minimizes second order approximation

$$\hat{f}(z+v) = f(z) + \nabla f(z)^{\mathsf{T}} v + \frac{1}{2} v^{\mathsf{T}} \nabla^2 f(z) v$$

Optimality condition: $\nabla \hat{f}(z+v^*)=0$

$$\nabla f(z) + \nabla^2 f(z) v^* = 0$$

$$\Rightarrow \nabla^2 f(z) v^* = -\nabla f(z)$$



• Decent direction:

$$\nabla f(z)^T \Delta z_{nt} = -\nabla f(z)^T \nabla^2 f(z)^{-1} \nabla f(z) < 0$$

f convex implies that $\nabla^2 f(z) \succeq 0$

• If z is close to optimum, $\|\nabla f(z)\|_2$ converges to zero quadratically (**extremly** quickly)

Line-search

Choose step size t > 0 such that $f(z + t\Delta z) < f(z)$

$$t^{\star} = \operatorname{argmin}_{t>0} f(z + t\Delta z)$$

f is convex, and so $f(z + t\Delta z)$ is a single-variable convex function in t.

Options:

- Solve exactly using bisection search
 - Time consuming, requires many evaluations of f
- Solve very approximately using backtracking search
 - Much faster, step size very rough
 - Accuracy doesn't usually matter much

Outline

- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

Barrier Interior-point Method

$$\min_{z} \{ f(z) \mid g(z) \le 0 \}$$

Input: strictly feasible z, $\kappa := \kappa^{(0)}$, $0 < \mu < 1$, tolerance $\epsilon > 0$ repeat

- 1. Centering step: Compute $z^*(\kappa)$ by minimizing $f(z) + \kappa \phi(z)$ starting from z
- 2. Update $z := z^*(\kappa)$
- 3. Stopping criterion: Stop if $m\kappa < \epsilon$
- 4. Decrease barrier parameter: $\kappa := \mu \kappa$
- Several heuristics for choice of $\kappa^{(0)}$ and other parameters¹
- Terminates with $f(z^*) p^* \le \epsilon$
- Steps 1-4 represent one outer iteration
- Step 1: Solve unconstrained minimization problem

¹More details in Convex Optimization, S. Boyd and L. Vandenberghe

Centering Step using Newton's Method

Centering Step: Compute $z^*(\kappa)$ by solving

$$\min_{z} f(z) + \kappa \phi(z)$$

Apply algorithm of general descent method:

Input: starting point $z \in \text{domain of } f$

repeat

- 1. Compute descent direction Δz
- 2. Line search: Choose step size t > 0 such that $f(z + t\Delta z) < f(z)$
- 3. Update $z := z + t\Delta z$

until stopping criterion is satisfied

with

- Descent direction: Newton direction
- Line search: Adapt to satisfy inequality constraints

Centering Step using Newton's Method

Newton direction:

• Δz_{nt} minimizes second order approximation

$$\hat{f}(z+v) = f(z) + \kappa \phi(z) + \nabla f(z)^{T} v + \kappa \nabla \phi(z)^{T} v$$

$$+ \frac{1}{2} v^{T} \nabla^{2} f(z) v + \frac{1}{2} \kappa v^{T} \nabla^{2} \phi(z) v$$

• Newton direction for barrier method is given by solution of

$$(\nabla^2 f(z) + \kappa \nabla^2 \phi(z)) \Delta z_{nt} = -\nabla f(z) - \kappa \nabla \phi(z)$$

Line search: Consists of two steps:

- Find $t_{max} = \operatorname{argmax}_{0 < t < 1} \{ t \mid g_1(z + t\Delta z) < 0, \dots, g_m(z + t\Delta z) < 0 \}$
- Find $t^* = \operatorname{argmin}_{t \geq 0} \{ f(z + t\Delta z) \}$

both either solved exactly or through backtracking.

Newton step for Quadratic Programming

$$\min_{z} \{ \frac{1}{2} z^{T} Hz \mid Gz \leq d \}$$

• Barrier method:

$$\min_{z} f(z) + \kappa \phi(z) = \min_{z} \frac{1}{2} z^{T} Hz - \kappa \sum_{i=1}^{m} \log(d_{i} - g_{i}z)$$

where g_1, \ldots, g_m are the rows of G.

• The gradient and Hessian of the barrier function are:

$$\nabla \phi(z) = \sum_{i=1}^{m} \frac{1}{d_i - g_i z} g_i^{\mathsf{T}}, \nabla^2 \phi(z) = \sum_{i=1}^{m} \frac{1}{(d_i - g_i z)^2} g_i^{\mathsf{T}} g_i$$

• Newton step:

$$(\nabla^{2} f(z) + \kappa \nabla^{2} \phi(z)) \Delta z_{nt} = -\nabla f(z) - \kappa \nabla \phi(z)$$
$$(H + \kappa \sum_{i=1}^{m} \frac{1}{(d_{i} - g_{i}z)^{2}} g_{i}^{T} g_{i}) \Delta z_{nt} = -Hz - \kappa \sum_{i=1}^{m} \frac{1}{d_{i} - g_{i}z} g_{i}^{T}$$

Barrier IPM for Quadratic Programming

$$\min_{z} \{ \frac{1}{2} z^{T} Hz \mid Gz \leq d \}$$

Input: strictly feasible z, $\kappa := \kappa^{(0)}$, $0 < \mu < 1$, tolerance $\epsilon > 0$ repeat

- 1. Centering step:
- 2. repeat
 - 2.1 Compute search direction Δz :

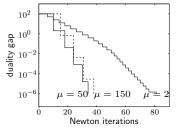
$$(H + \kappa \sum_{i=1}^{m} \frac{1}{(d_i - g_i z)^2} g_i^T g_i) \Delta z = -Hz - \kappa \sum_{i=1}^{m} \frac{1}{d_i - g_i z} g_i^T$$

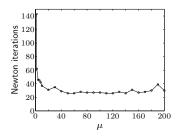
- 2.2 *Line search*: Choose step size t > 0
- 2.3 Update $z := z + t\Delta z$
- 3. **until** stopping criterion is satisfied
- 4. Decrease barrier parameter: $\kappa := \mu \kappa$

until $m\kappa < \epsilon$

Remarks on Barrier Method

- Choice of μ involves trade-off: small μ few outer iterations, but more inner iterations to compute $z^{(k+1)}$ from $z^{(k)}$ (typical values $\mu=0.1-0.05$)
- Good convergence properties for a wide range of parameters μ Example: LP with 100 inequalities, 50 variables





(Note that the μ shown here in the plots is $1/\mu$ from the lectures)

- Barrier method requires strictly feasible initial point Phase I method, e.g., $\min_{z,s} \{ s \mid g(z) \le s \}$
- Barrier method can be similarly applied to problems with additional equality constraints

Barrier Interior-point Method

$$\min_{z} \{ f(z) \mid g(z) \le d, \ Cz = b \}$$

Input: strictly feasible z, $\kappa := \kappa^{(0)}$, $\mu > 1$, tolerance $\epsilon > 0$ repeat

- 1. Centering step: Compute $z^*(\kappa)$ by minimizing $f(z) + \kappa \phi(z)$ subject to Cz = b starting from z
- 2. Update $z := z^*(\kappa)$
- 3. Stopping criterion: Stop if $m\kappa < \epsilon$
- 4. Decrease barrier parameter: $\kappa := \mu \kappa$
- Several heuristics for choice of $\kappa^{(0)}$ and other parameters²
- Terminates with $f(z^*) p^* \le \epsilon$
- Steps 1-4 represent one outer iteration
- Step 1: Solve unconstrained minimization problem

²More details in Convex Optimization, S. Boyd and L. Vandenberghe, 2004

Centering Step using Newton's Method

Centering Step: Compute $z^*(\kappa)$ by solving

min
$$f(z) + \kappa \phi(z)$$

s.t. $Cz = d$

• Newton step Δz_{nt} for minimization with equality constraints is given by solution of

$$\begin{bmatrix} \nabla^2 f(z) + \kappa \nabla^2 \phi(z) & C^T \\ C & \end{bmatrix} \begin{bmatrix} \Delta z_{nt} \\ \nu \end{bmatrix} = - \begin{bmatrix} \nabla f(z) + \kappa \nabla \phi(z) \\ 0 \end{bmatrix}$$

• Same interpretation as Newton step for unconstrained problem: $z + \Delta z_{nt}$ minimizes second order approximation

$$\min \nabla f(z)^{T} v + \kappa \nabla \phi(z)^{T} v + \frac{1}{2} v^{T} \nabla^{2} f(z) v + \frac{1}{2} \kappa v^{T} \nabla^{2} \phi(z) v$$
s.t. $Cv = 0$

Recap: Interior-point Methods

Barrier method

- Intuition: Follow central path to the optimal solution
- Log barrier function ensures satisfaction of inequality constraints
- Unconstrained or equality constrained problems can be solved efficiently using Newton's method

'Modern' methods: Primal-dual methods

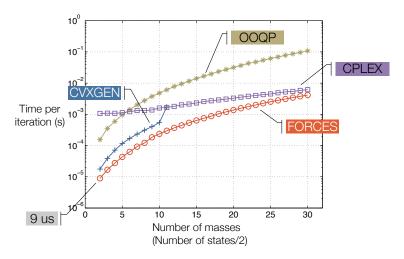
- Often more efficient than barrier method, can exhibit better than linear convergence
- Cost per iteration same as barrier method
- Allow for infeasible start (w.r.t. both equality and inequality constraints)
- Most efficient in practice: Mehrotra's predictor-corrector method³

Interior-point methods are very efficient for range of optimization problems, e.g. LPs, QPs, second-order cone programs, semidefinite programs.

³See, e.g., Numerical Optimization, J. Nocedal and S. Wright, 2006 Springer

How Fast?

Time per iteration for MPC problem on desktop PC. Total time will be $\sim 10 \times$ slower.



3-59

Outline

- 1. Optimization in MPC
- 2. Main Concepts
- 3. Convex Optimization
- 4. Linear and Quadratic Programming
- 5. Constrained Minimization: Interior-point Methods
 - Concept
 - Unconstrained Minimization
 - Barrier Interior-Point Method
- 6. Summary of Exercise Session

Exercise Session #2

Implement the barrier method for the QP

$$\min_{z} \quad \frac{1}{2} z^{T} H z + q^{T} z$$
s.t. $Gz \le d$

Download code from moodle

Exercises:

- 1. Compute the search direction and complete the implementation of the barrier method.
- 2. Investigate relationship between problem and tuning parameters and convergence rate.