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Recall: Receding Horizon Control

Compute optimal sequence over N-step horizon
N
N u*(xp) := argmin ZX,TQX,' + u,TRu,v
i=0
s.t. X1 = Ax; + Bu;

u”(x)

Extract first input in
sequence

u“(xo) = {wo. ..., un-1}

Uo

System
xt = Ax+ Bu

[

For unconstrained systems, this is a constant linear controller
However, can extend this concept to much more complex systems (MPC)
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What'’s the Prediction For?

Horizon provides a tradeoff between short-term and long-term benefits.

Infinite-horizon:
e Cost is finite only if the system is stable

e Minimizing infinite-horizon prediction stabilizes the system

Cannot consider infinite-horizons when solving an optimization problem
o We will ‘fake’ infinite-horizon when solving MPC problems
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Linear Quadratic Regulator

V*(x0) := min E X T Qx4+ ux TRuk st Xes1 = Axi + Buy
u
k=0

Can solve the infinite-horizon predictive control problem in closed-form:
P=Q+A"PA-ATPB(R+BTPB)'BTPA
The optimal input is the constant state feedback

u= Kx K=—(R+B"PB)'BTPA

The optimal cost function V*(x) = x” Px is a Lyapunov function for the
closed-loop system x* = (A + BK)x.
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1. Optimization in MPC
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MPC: Optimization in the loop

N—1
u*(x) := argmin Z I1(xi, ui) + Vi (xn)
i=0

st. xp=x measurement
Xit1 = f(x;, uj) system model
g(xi, u) <0 constraints

N
u () = )} upa} plant state x

Plant —— Output y

At each sample time:

e Measure /estimate current state
e Find the optimal input sequence for the entire planning window N
e Implement only the first control action
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Optimization Problems arising in MPC

Linear Systems

Nonlinear Systems

e Linear system dynamics

o Continuous set of states and
inputs, e.g.,
X € [Xminv Xmax]y ue [Uminy Umax]

o Example: Chemical processes

¢ Nonlinear system dynamics

e Continuous set of states and
inputs, e.g.,
S [Xmin, Xmax]y uec [Umin, Umax]

o Example: Kites

Hybrid Systems

Discrete Decision Variables

e Mixed dynamics that are both
continuous and discrete, e.g.

Xkt1 = —C1 Xk 2 Xmax
Xk+1 = G2 — (1
o Continuous set of states and
inputs

Xk < Xmax

o Example: Walking robot

Introduction to Convex Optimization

e Inputs and/or states can only
take discrete values, e.qg.
ue{l,273,4,5}

e Example: Internet
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2. Main Concepts
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Mathematical Optimization

Mathematical optimization problem is generally formulated as

minimize f(z)

inequality constraint functions

e hR"—>R,i=1,..., m:
equality constraint functions

e z is feasible or admissible if it satisfies the f(z) = const
constraints
e C:={z]ygi(2)<0,i=1,..., m, hi(z)=0,i=1,..., p}:

set of feasible or admissible decisions, or feasible set
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Optimality
Optimal value: smallest possible cost
p* =inf{f(z) | gi(z) <0i=1,..., m, hi(z)=0,i=1,..., p}

Optimizer: feasible z that achieves smallest cost p*, i.e., z* € C with
p* = f(z*); set of all optimizers is denoted by Zyp: (optimizer is not always
unique).

e z € C is locally optimal if, for some R > 0, it satisfies

yelly—zl| <R=f(y) > f(z)

e z € C is globally optimal if it satisfies

>
yelC=f(y)>f(z) ) .
V4
e If p* = —o0 the problem is unbounded below
e If C is empty, then the problem is said to be infeasible ¢

(convention: p* = 00)

e If m= p =0 the problem is said to be unconstrained
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Solving nonlinear optimization problems

Traditional techniques for general nonconvex problems involve compromises,
e.d., very long computation time, or not always finding the solution:

Local optimization methods

Find a point that minimizes f among feasible points near it
e Fast, can handle large problems

¢ Requires initial guess

e Provides no information about distance to (global) optimum

Global optimization methods
Find the (global) solution
e Worst-case complexity grows exponentially with problem size

Exceptions
Certain problem classes can be solved efficiently and reliably:
e.g. convex optimization problems

Introduction to Convex Optimization 3-11 Model Predictive Control ME-425



Outline

3. Convex Optimization
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Convex Sets

Convex set: A set S € R® is convex if
A+ (1—XN)zeSforall z;, € S, A €0, 1]

i.e convex set contains line segment between any two points in the set
Examples: one convex, two non-convex sets

]
L ]

Convex combination of z, ..., zx: Any point z of the form

z2=01z21 +020+ ... +0zxwith6; +...+06,=1,6,>0
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Convex sets: Hyperplanes and Halfspaces

« Hyperplane: Set of the form {x | a’"x = b} (a # 0)

o Useful representation: {x |a’(x —x) <0}
a is normal vector, xp lies on the boundary

e Hyperplanes are affine and convex, halfspaces are convex
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Convex sets: Polyhedra
Polyhedron

A polyhedron is the intersection of a finite number of halfspaces.
P::{x|a,-TX§b,-,/':1 ..... n}

A polytope is a bounded polyhedron.

Often written as P := {x | Ax < b}, for matrix A € R™" and b € R™, where
the inequality is understood row-wise.

ag
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Convex function: Definition

¢ Convex function:
A function f : S — R is convex if S is convex and

f(>\21 + (1 — >\)ZQ) < >\f(21) + (1 — >\)f(22)
forall z1,z2 € S,A € [0, 1]

(y, f(v))
(z, f(x))

e A function f : S — R is strictly convex if S is convex and

f(>\21 + (1 — >\)22) < >\f(21) + (1 — )\)f(Z2)
forall zy,z € S, A € (0, 1)

e A function f : S — R is concave if S is convex and —f is convex.
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First and second order condition for convexity
First-order condition: Differentiable f with convex domain is convex iff

f(y) > f(x)+ VF(x)"(y — x) forallx,y € domf

f(y)
f@) + Vi) (y— =)

(=, f(=))
— First-order approximation of f is global underestimator

Second-order condition: Twice differentiable f with convex domain convex iff

V2f(x) =0 forall x € dom f
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Convex functions—Examples

Examples on R:

e Exponential: €%, for any a € R
e Powers: x? on Ry for a > 1 or a < 0 (otherwise concave)

e Logarithm: —logx on R,
Examples on R":

o Affine function: f(x) =a’x+ b

o Norms: [|x]lp = (XiLy [xil?)? for p > 1; fIxlec = maxi x|
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Convex optimization problem

Convex optimization problem in standard form

min f(z)

st.gi(z)<0,i=1,...,m

¢'z=by,i=1,....p

e £.91,...,gm are convex
e equality constraints are affine

often rewritten as

where C € RP*" and g : R” — R™.

Important property: Feasible set of a convex optimization problem is convex.

Introduction to Convex Optimization 3-19

Model Predictive Control ME-425



Local and global optimality in convex optimization

Lemma: Convex problems: Local optima are global optima

Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f(y) < f(x).

x locally optimal implies that there exists an R > 0 such that

lz=xl2 <R = f(2) > f(x)

F0)1

v
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Local and global optimality in convex optimization

Lemma: Convex problems: Local optima are global optima

Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f(y) < f(x).

x locally optimal implies that there exists an R > 0 such that

lz=xl2 <R = f(2) > f(x)

Local optimality
= f(z) > f(x)

Convexity
= f(z) < f(x)

v
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Recap: Convex optimization

e Convex optimization problem:

— Convex cost function
— Convex inequality constraints
— Affine equality constraints

o Benefit of convex problems: Local = Global optimality
e Only need to find one minimum, it is the global minimum!

e Convex optimization problems can be solved efficiently
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4. Linear and Quadratic Programming
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Linear Program (LP)

min ¢’ z

st. Gz <d
Cz=b

where z € R".

o Convex optimization problem with affine objective and constraint functions
e Feasible set P is a polyhedron

(a) Gz<d (b) CGTz=b; (c) Gz<dnCTz=1b;

o If P is empty, then the problem is infeasible
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Graphical Interpretation and Solutions Properties

Denote by p* the optimal value and by Z,: the set of optimizers

Case 1. The LP solution is unbounded, i.e., p* = —cc.

Case 2. The LP solution is bounded, i.e., p* > —oo and the optimizer is
unique. Zypt is a singleton.

Case 3. The LP solution is bounded and there are multiple optima.
Zopt Is a subset of R®, which can be bounded or unbounded.

(a) Case 1
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Quadratic program (QP)

1
min EZTHZ +qTz+7r
st. Gz < d
Cz=b
where z € R", H € R™",

o Convex if H = 0 (hard problem if H % 0)
e Let P be the feasible set.

Two cases can occur if P is not empty:

Case 1. The optimizer lies strictly inside the feasible polyhedron
Case 2. The optimizer lies on the boundary of the feasible polyhedron

Z‘Hz+qz+r= k
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Standard optimization problems in MPC

Most common MPC problems based on

e Linear system model
e Linear constraints

e Linear norm or quadratic cost

— Result in linear or quadratic programs

Linear norm vs. quadratic cost:

Linear norm — LP: Quadratic — QP:
o Very easy to solve e More comp. effort (still easy)
e Possibly non-unique solutions ¢ Unique solution

e Minimize 'quantity’ of something e Energy arguments

e Far away from origin: slow action Relation to LQ control

e Close to the origin: a lot of action,
Jjumping, dead-beat and nervous
behavior

Far away from origin: a lot of action

Close to the origin: smooth action
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5. Constrained Minimization: Interior-point Methods

e Concept
¢ Unconstrained Minimization
e Barrier Interior-Point Method
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Constrained Minimization Problem
Consider the following problem with inequality constraints

min f(z)
st.gi(z)<0,i=1,...,m

e f,g; convex, twice continuously differentiable
e We assume p* is finite and attained

e We assume problem is strictly feasible: there exists a Z with
Zz e domainof f, gi(2)<0,i=1,...,m

Idea: There exist many methods for unconstrained minimization

= Reformulate problem as an unconstrained problem
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Graphical lllustration
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Graphical lllustration

Define function as oo if constraints violated.
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Barrier method
mZin f(z) + kd(z)

Reformulate via indicator function:

m

$(2) = I-(gi(2)), k=1

i=1
where /[_(u) =0 if u <0 and /- = co otherwise (indicator function of R_)

e Augmented cost is not differentiable

Approximation via logarithmic barrier:

¢(z) =— Z log(—gi(z))

e For Kk > 0 smooth approximation of
indicator function -5

e Approximation improves as k — 0
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Logarithmic Barrier Function

e Convex, smooth on its domain

e ¢(z) — oo as z approaches boundary of domain and of the inequality
constraints

argmin,¢(z) is called analytic center of inequalities g; <O, ..., gm <0

e Twice continously differentiable with derivatives

1
Vo(z) = Vgi(z)
= —9(2) ?
V0(2) = 3 L Val@)vala) + — v alz)
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Central Path

o Define z*(k) as the solution of
min f(z) + k$(z)

(assume minimizer exists and is unique for each k > 0)
e Barrier parameter k determines relative weight of objective and barrier
o Barrier ‘traps’ z(k) in strictly feasible set
o Central path is defined as {z*(k) | K > 0}

o For given k can compute z*(k) by solving smooth unconstrained
minimization problem

o Intuitively z*(k) converges to optimal solution as kK — 0
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Example: Central path for an LP
min ¢’ z
st.a/x<b,i=1,..., 6

x € R?, ¢ points up

k = 1000 k=1/5 k =1/100
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Path-following Method

Idea: Follow central path to the optimal solution
Solve sequence of smooth unconstrained problems:
7*(k) = argmin, f(2) + k¢(2)
« Assume current solution is on the central path z(k) = z*(k(¥))
o Update k(k*t1) by decreasing k(K) by some amount
« Solve for z*(k(**1)) starting from z*(k(¥))

« If method converges, it converges to the optimal solution, i.e., z(K) — z*
fork = 0
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Barrier Interior-point Method

min{f(z) | 9(z) < 0}

Input: strictly feasible z, k := k(®), 0 < < 1, tolerance € > 0
repeat

1. Centering step: Compute z*(k) by minimizing
f(z) + kp(z) starting from z

2. Update z := z*(k)

3. Stopping criterion: Stop if mk < €

4. Decrease barrier parameter. k := Uk

o Several heuristics for choice of k(©) and other parameters!
e Terminates with f(z*) — p* <e¢
e Steps 1-4 represent one outer iteration

e Step 1: Solve unconstrained minimization problem

IMore details in Convex Optimization, S. Boyd and L. Vandenberghe
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Barrier Interior-point Method

min{f(z) | 9(z) < 0}

Input: strictly feasible z, k := k(®), 0 < < 1, tolerance € > 0
repeat

1. Centering step: Compute z*(x) by minimizing
f(z) + k¢(z) starting from z

2. Update z := z*(k)
3. Stopping criterion: Stop if mk < €

4. Decrease barrier parameter: k := Uk

o Several heuristics for choice of k(©) and other parameters!
e Terminates with f(z*) — p* <e¢
e Steps 1-4 represent one outer iteration

e Step 1: Solve unconstrained minimization problem

IMore details in Convex Optimization, S. Boyd and L. Vandenberghe
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Example - Quadratic Program
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5. Constrained Minimization: Interior-point Methods

¢ Unconstrained Minimization
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Optimality Conditions for Unconstrained Problems
Consider the unconstrained optimization problem

min f(z) with f:R* - R

z
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Optimality Conditions for Unconstrained Problems

Consider the unconstrained optimization problem

min f(z) with f:R* - R
z

Theorem: Necessary condition

Assume f(-) differentiable at z*. If z* is a local minimizer,
then Vf(z*) =0.

Theorem: Sufficient condition

Assume that f(-) is twice differentiable at z*. If Vf(z*) =
0 and the Hessian of f(z) at z* is positive definite, i.e.
V2f(z*) = 0, then z* is a local minimizer.

Theorem: Necessary and sufficient condition Vi(z') =0

Assume f(-) differentiable at z*. If f is convex, then z* is a
global minimizer if and only if Vf(z*) = 0.

For more details and proofs see, e.g., M.S. Bazaraa, H.D. Sherali, and C.M. Shetty.
Nonlinear Programming Theory and Algorithms. John Wiley & Sons, Inc., New York, 1993.
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Unconstrained Minimization
min f(z) with f:R* - R

e f convex, twice continuously differentiable

o We assume optimal value p* = min, f(z) is attained (and finite)
Unconstrained minimization methods

o Generate sequence of points z(K) in domain of f with
f(zK) = p* for Kk — o0
e Can be interpreted as iterative methods for solving optimality condition
Vi(z*)=0

(nonlinear set of equations, usually no analytical solution)
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Descent Methods
2+ = 200 L A Z)  with £(2HD) < £(2(0)
e Az is the step or search direction
e t is the step size or step length
o f(zF) < £(z(M), ie., Az is a descent direction

o There exists a t > 0 such that f(z(-t1)) < f(z(K) if VF(z)TAz <0
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Descent Methods
2+ = 200 L A Z)  with £(2HD) < £(2(0)
e Az is the step or search direction
e t is the step size or step length
o f(zF) < £(z(M), ie., Az is a descent direction
o There exists a t > 0 such that f(z(-t1)) < f(z(K) if VF(z)TAz <0

General descent method:
Input: starting point z € domain of f
repeat
1. Compute a descent direction Az
2. Line search: Choose step size t > 0 such that f(z 4+ tAz) < f(z)

3. Update z := z + tAz
until stopping criterion is satisfied
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Descent Directions
Lots of ways to choose descent directions:
e Gradient descent: Az := —Vf(z)
Vf(z)"Az = -Vf(z)"Vf(z) = —|Vf(z)]| <O
Tends to be too aggressive (zig-zagging).

e Direction as function of several previous gradients:

— Conjugate gradient method
— Fast gradient method

Much better, but still limited

e Best: Newton method
Az = —V?f(2)"'VF(2)

Cost: Must invert the Hessian
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Newton’s Method
Azye = —V2f(2)'VF(2)

e Interpretation: z 4+ Az, minimizes second order approximation

Flz+v)=Ff(z)+VFf(z) v+ %VTVQIC(Z)V

Optimality condition: V#(z+v*) =0

Vf(2)+v2f(z)v*:0 (z.f(2))
- VQf(Z) V= _Vf(Z) (z4 Azye, f(z+ AZnt)jw”./

» Decent direction:
Vf(z) Az, = —VF(2)TV?F(2)"1VF(z) <0
f convex implies that V2f(z) > 0

o If z is close to optimum, |[Vf(z)||2 converges to zero quadratically
(extremly quickly)
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Line-search

Choose step size t > 0 such that f(z + tAz) < f(z)
t* = argmin, f(z + tAz)

f is convex, and so f(z + tAZz) is a single-variable convex function in t.

Options:
e Solve exactly using bisection search
— Time consuming, requires many evaluations of f
e Solve very approximately using backtracking search

— Much faster, step size very rough
— Accuracy doesn’t usually matter much
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5. Constrained Minimization: Interior-point Methods

e Barrier Interior-Point Method
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Barrier Interior-point Method

min{f(z) | 9(z) < 0}

Input: strictly feasible z, k := k(®), 0 < < 1, tolerance € > 0
repeat

1. Centering step: Compute z*(k) by minimizing
f(z) + kp(z) starting from z

2. Update z := z*(k)

3. Stopping criterion: Stop if mk < €

4. Decrease barrier parameter. k := Uk

o Several heuristics for choice of k(©) and other parameters!
e Terminates with f(z*) — p* <e¢
e Steps 1-4 represent one outer iteration

e Step 1: Solve unconstrained minimization problem

IMore details in Convex Optimization, S. Boyd and L. Vandenberghe
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Centering Step using Newton’s Method
Centering Step: Compute z*(k) by solving
mZin f(z) + kop(2)

Apply algorithm of general descent method:

Input: starting point z € domain of f
repeat
1. Compute descent direction Az
2. Line search: Choose step size t > 0 such that f(z 4+ tAz) < f(z)
3. Update z := z + tAz
until stopping criterion is satisfied

with

e Descent direction: Newton direction
e Line search: Adapt to satisfy inequality constraints
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Centering Step using Newton’s Method

Newton direction:
e Az, minimizes second order approximation
F(z+v)=f(2) + kp(z) + VF(2) v+ kV(2) v
+ %VTV2f(Z)V + %K,VTVQ(b(Z)V
e Newton direction for barrier method is given by solution of
(V2f(2) + kV?P(2)) Az = —V(2) — kVP(2)
Line search: Consists of two steps:

o Find tmax = argmaxg;<1{t | g1(z +tAz) <0, ..., Im(z + tAZz) < 0}
o Find t* = argmin,»o{f(z + tAz)}

both either solved exactly or through backtracking.
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Newton step for Quadratic Programming

1
min{=z"Hz | Gz < d}
z 2

e Barrier method:

1 m
min f(z) + kp(z) = min =z"Hz — K E log(d; — giz)
z z 2 1
where g1, ..., Jgm are the rows of G.

e The gradient and Hessian of the barrier function are:

m

L T o2 - 1 T
Vo(z) = Z - g,-zgi Vop(z) = Z mgj gi
i=1 i=1

e Newton step:

(Vf(z )+:~cv2¢( 2))Azy = —V£(z) — kV¢(2)

1
H—|—K,Z 2g, T9) Az, = _HZ_K'Zd — g,T
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Barrier IPM for Quadratic Programming

1
min{=z"Hz | Gz < d}
z 2

Input: strictly feasible z, k := k(®), 0 < < 1, tolerance € > 0
repeat
1. Centering step:

2. repeat
2.1 Compute search direction Az:
o 1
(H+F~Z @ gz ¥ 98z :_HZ_ng;d,-fg,-zgiT
2.2 Line search: Choose step size t > 0
2.3 Update z .= z + tAz

3. until stopping criterion is satisfied

4. Decrease barrier parameter: Kk := Uk
until mk < e
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Remarks on Barrier Method

e Choice of w involves trade-off: small w few outer iterations, but more inner
iterations to compute z(kt1) from z(K) (typical values 4 = 0.1 — 0.05)

e Good convergence properties for a wide range of parameters p
Example: LP with 100 inequalities, 50 variables

102 140
o 107 [ 4 =
) g 100
21072 2 80
E] S 60
S 1074 s
-3 o 40
: =
1076 p=2>501u=150 p=2 20
0 20 40 60 80 OO 40 80 120 160 200
Newton iterations “w

(Note that the w shown here in the plots is 1/u from the lectures)

e Barrier method requires strictly feasible initial point
Phase | method, e.g., min, s{s | g(z) < s}

e Barrier method can be similarly applied to problems with additional equality
constraints
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Barrier Interior-point Method

mZin{f(z) | 9(z) < d, Cz=b}

Input: strictly feasible z, k := k(®), u > 1, tolerance € > 0
repeat

1. Centering step: Compute z*(x) by minimizing
f(z) + k¢(z) subject to Cz = b starting from z

2. Update z := z*(k)
3. Stopping criterion: Stop if mk < €

4. Decrease barrier parameter: k := Uk

o Several heuristics for choice of k(©) and other parameters?
e Terminates with f(z*) — p* <e¢
e Steps 1-4 represent one outer iteration

e Step 1: Solve unconstrained minimization problem

2More details in Convex Optimization, S. Boyd and L. Vandenberghe, 2004
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Centering Step using Newton’s Method
Centering Step: Compute z*(k) by solving

min (2) + kp(z)
st. Cz=d

o Newton step Az, for minimization with equality constraints is given by
solution of

V2f(2) —|—C/{V2¢>(z) CT] [Aint] _ [Vf(z) —I—OK,Vd)(Z)

e Same interpretation as Newton step for unconstrained problem:
z 4+ Az, minimizes second order approximation

. 1 1
min Vf(z)"v+kVé(z) v + EVTV2f(z)v + EI{VTVQ(b(Z)V
st. Cv=0
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Recap: Interior-point Methods

Barrier method

e Intuition: Follow central path to the optimal solution

e Log barrier function ensures satisfaction of inequality constraints

e Unconstrained or equality constrained problems can be solved efficiently
using Newton's method

‘Modern’ methods: Primal-dual methods

o Often more efficient than barrier method, can exhibit better than linear
convergence

e Cost per iteration same as barrier method
o Allow for infeasible start (w.r.t. both equality and inequality constraints)

o Most efficient in practice: Mehrotra's predictor-corrector method?3

Interior-point methods are very efficient for range of optimization problems,
e.g. LPs, QPs, second-order cone programs, semidefinite programs.

3See, e.g., Numerical Optimization, J. Nocedal and S. Wright, 2006 Springer
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How Fast?

Time per iteration for MPC problem on desktop PC.
Total time will be ~ 10x slower.

Time per
iteration (s)

-6 L L L L L L
9 us ’—)'(/0 5 10 15 20 25 30
Number of masses
(Number of states/2)

[A. Domahidi, A.U. Zgraggen, M.N. Zeilinger, M. Morari and C.N. Jones, 2012]
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Outline

6. Summary of Exercise Session
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Exercise Session #2

Implement the barrier method for the QP

1
mn -z Hz+q'z
z 2

st. Gz<d

Download code from moodle

Exercises:

1. Compute the search direction and complete the implementation of the
barrier method.

2. Investigate relationship between problem and tuning parameters and
convergence rate.
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