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Recall: Receding Horizon Control

Compute optimal sequence over N-step horizon


System




Extract first input in 
sequence
_

\�

u�(x)

x+ = Ax + Bu

u�(x0) = {u0, . . . , uN�1}

u�(x0) := argmin

N�

i=0

xTi Qxi + uTi Rui

Z�[� xi+1 = Axi + Bui

For unconstrained systems, this is a constant linear controller
However, can extend this concept to much more complex systems (MPC)
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What’s the Prediction For?
Horizon provides a tradeoff between short-term and long-term benefits.

Infinite-horizon:
• Cost is finite only if the system is stable

• Minimizing infinite-horizon prediction stabilizes the system

Cannot consider infinite-horizons when solving an optimization problem
• We will ‘fake’ infinite-horizon when solving MPC problems
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Linear Quadratic Regulator

V ?(x0) := min
u

∞∑

k=0

xk
TQxk + uk

TRuk s.t. xk+1 = Axk + Buk

Can solve the infinite-horizon predictive control problem in closed-form:

P = Q + ATPA− ATPB(R + BTPB)−1BTPA

The optimal input is the constant state feedback

u = Kx K = −(R + BTPB)−1BTPA

The optimal cost function V ?(x) = xTPx is a Lyapunov function for the
closed-loop system x+ = (A + BK )x .

Introduction to Convex Optimization 3–4 Model Predictive Control ME-425



Outline

1. Optimization in MPC

2. Main Concepts

3. Convex Optimization

4. Linear and Quadratic Programming

5. Constrained Minimization: Interior-point Methods

• Concept

• Unconstrained Minimization

• Barrier Interior-Point Method

6. Summary of Exercise Session

Introduction to Convex Optimization 3–5 Model Predictive Control ME-425



MPC: Optimization in the loop

Plant


plant state x 

Output y 

u�(x) = {u�0, . . . , u�N�1}

u�(x) := argmin

N�1�

i=0

l(xi , ui) + Vf (xN)

Z�[� x0 = x TLHZ\YLTLU[
xi+1 = f (xi , ui) Z`Z[LT�TVKLS
g(xi , ui) � 0 JVUZ[YHPU[Z

At each sample time:

• Measure /estimate current state

• Find the optimal input sequence for the entire planning window N

• Implement only the first control action
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Optimization Problems arising in MPC

Linear Systems

• Linear system dynamics

• Continuous set of states and
inputs, e.g.,
x ∈ [xmin, xmax], u ∈ [umin, umax]

• Example: Chemical processes

Nonlinear Systems

• Nonlinear system dynamics

• Continuous set of states and
inputs, e.g.,
x ∈ [xmin, xmax], u ∈ [umin, umax]

• Example: Kites

Hybrid Systems

• Mixed dynamics that are both
continuous and discrete, e.g.{

xk+1 = −c1 xk ≥ xmax

xk+1 = c2 − c1 xk < xmax

• Continuous set of states and
inputs

• Example: Walking robot

Discrete Decision Variables

• Inputs and/or states can only
take discrete values, e.g.
u ∈ {1, 2, 3, 4, 5}

• Example: Internet
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Mathematical Optimization

Mathematical optimization problem is generally formulated as

minimize f (z)

s.t. gi (z) ≤ 0, i = 1, . . . ,m

hi (z) = 0, i = 1, . . . , p

• z = [z1, . . . , zn]: optimization variables

• f : Rn → R: objective or cost function

• g : Rn → R, i = 1, . . . ,m:
inequality constraint functions

• h : Rn → R, i = 1, . . . ,m:
equality constraint functions

• z is feasible or admissible if it satisfies the
constraints

z�

C

f (z) = JVUZ[

• C := {z | gi (z) ≤ 0, i = 1, . . . ,m, hi (z) = 0, i = 1, . . . , p}:
set of feasible or admissible decisions, or feasible set
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Optimality

Optimal value: smallest possible cost
p∗ , inf {f (z) | gi (z) ≤ 0 i = 1, . . . ,m, hi (z) = 0, i = 1, . . . , p}
Optimizer: feasible z that achieves smallest cost p∗, i.e., z∗ ∈ C with
p∗ = f (z∗); set of all optimizers is denoted by Zopt (optimizer is not always
unique).

• z ∈ C is locally optimal if, for some R > 0, it satisfies

y ∈ C, ‖y − z‖ ≤ R ⇒ f (y) ≥ f (z)

• z ∈ C is globally optimal if it satisfies

y ∈ C ⇒ f (y) ≥ f (z)

• If p∗ = −∞ the problem is unbounded below
• If C is empty, then the problem is said to be infeasible
(convention: p∗ =∞)

• If m = p = 0 the problem is said to be unconstrained

f (z) R

f (y)

C

f (y)
f (z)

C
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Solving nonlinear optimization problems

Traditional techniques for general nonconvex problems involve compromises,
e.g., very long computation time, or not always finding the solution:

Local optimization methods
Find a point that minimizes f among feasible points near it
• Fast, can handle large problems

• Requires initial guess

• Provides no information about distance to (global) optimum

Global optimization methods
Find the (global) solution
• Worst-case complexity grows exponentially with problem size

Exceptions
Certain problem classes can be solved efficiently and reliably:
e.g. convex optimization problems
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Convex Sets
Convex set: A set S ∈ Rs is convex if

λz1 + (1− λ)z2 ∈ S for all z1, z2 ∈ S , λ ∈ [0, 1]

i.e convex set contains line segment between any two points in the set
Examples: one convex, two non-convex sets

Convex set

line segment between x1 and x2: all points

x = θx1 + (1 − θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

examples (one convex, two nonconvex sets)

Convex sets 2–3Convex combination of z1, . . . , zk : Any point z of the form

z = θ1z1 + θ2z2 + . . .+ θkzk with θ1 + . . .+ θk = 1, θi ≥ 0
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Convex sets: Hyperplanes and Halfspaces

• Hyperplane: Set of the form {x | aT x = b} (a 6= 0)

Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a != 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a != 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex

Convex sets 2–6

• Halfspace: Set of the form {x | aT x ≤ b} (a 6= 0)

Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a != 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a != 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex

Convex sets 2–6

• Useful representation:
{
x
∣∣ aT (x − x0) ≤ 0

}

a is normal vector, x0 lies on the boundary

• Hyperplanes are affine and convex, halfspaces are convex
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Convex sets: Polyhedra
Polyhedron

A polyhedron is the intersection of a finite number of halfspaces.

P :=
{
x
∣∣ aT

i x ≤ bi , i = 1, . . . , n
}

A polytope is a bounded polyhedron.

Often written as P := {x |Ax ≤ b}, for matrix A ∈ Rm×n and b ∈ Rm, where
the inequality is understood row-wise.

Polyhedra

P

ak

examples

• nonnegative orthant Rn
+ = {x ∈ Rn | x " 0}

• k-simplex Co{x0, . . . , xk} with x0, . . . , xk affinely
independent, i.e.,

Rank

([
x0 x1 · · · xk

1 1 · · · 1

])
= k + 1,

or equivalently, x1 − x0, . . . , xk − x0 lin. indep.

• probability simplex {x ∈ Rn | x " 0,
∑

i xi = 1}

Convex sets 2–11
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Convex function: Definition

• Convex function:
A function f : S → R is convex if S is convex and

f (λz1 + (1− λ)z2) ≤ λf (z1) + (1− λ)f (z2)

for all z1, z2 ∈ S , λ ∈ [0, 1]

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2

• A function f : S → R is strictly convex if S is convex and

f (λz1 + (1− λ)z2) < λf (z1) + (1− λ)f (z2)

for all z1, z2 ∈ S , λ ∈ (0, 1)

• A function f : S → R is concave if S is convex and −f is convex.
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First and second order condition for convexity

First-order condition: Differentiable f with convex domain is convex iff

f (y) ≥ f (x) +∇f (x)T (y − x) for all x , y ∈ dom f

First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) + ∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator

Convex functions 3–7

→ First-order approximation of f is global underestimator

Second-order condition: Twice differentiable f with convex domain convex iff

∇2f (x) � 0 for all x ∈ dom f
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Convex functions–Examples

Examples on R:

• Exponential: eax , for any a ∈ R
• Powers: xa on R+ for a ≥ 1 or a ≤ 0 (otherwise concave)

• Logarithm: − log x on R+

Examples on Rn:

• Affine function: f (x) = aT x + b

• Norms: ‖x‖p = (
∑n

i=1 |xi |p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk |
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Convex optimization problem

Convex optimization problem in standard form

min f (z)

s.t. gi (z) ≤ 0, i = 1, . . . ,m

cT
i z = bi , i = 1, . . . , p

• f , g1, . . . , gm are convex
• equality constraints are affine

often rewritten as

min f (z)

s.t. g(z) ≤ 0

Cz = b

where C ∈ Rp×n and g : Rn → Rm.

Important property: Feasible set of a convex optimization problem is convex.
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Local and global optimality in convex optimization
Lemma: Convex problems: Local optima are global optima

Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f (y) < f (x).

x locally optimal implies that there exists an R > 0 such that

‖z − x‖2 ≤ R ⇒ f (z) ≥ f (x)

f (x)

xy

f (y)

Rz
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Local and global optimality in convex optimization
Lemma: Convex problems: Local optima are global optima

Any locally optimal point of a convex problem is globally optimal.

Proof:
Assume x locally optimal and a feasible y such f (y) < f (x).

x locally optimal implies that there exists an R > 0 such that

‖z − x‖2 ≤ R ⇒ f (z) ≥ f (x)

f (x)

xy

f (y)

Rz

3VJHS�VW[PTHSP[`
� f (z) > f (x)

*VU]L_P[`
� f (z) < f (x)
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Recap: Convex optimization

• Convex optimization problem:
Convex cost function
Convex inequality constraints
Affine equality constraints

• Benefit of convex problems: Local = Global optimality

• Only need to find one minimum, it is the global minimum!

• Convex optimization problems can be solved efficiently
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Linear Program (LP)

min cT z

s.t. Gz ≤ d

Cz = b

where z ∈ Rn.

• Convex optimization problem with affine objective and constraint functions

• Feasible set P is a polyhedron

(a) Gz ≤ d (b) CT
i z = bi (c) Gz ≤ d ∩ CT

i z = bi

• If P is empty, then the problem is infeasible
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Graphical Interpretation and Solutions Properties

Denote by p∗ the optimal value and by Zopt the set of optimizers

Case 1. The LP solution is unbounded, i.e., p∗ = −∞.
Case 2. The LP solution is bounded, i.e., p∗ > −∞ and the optimizer is

unique. Zopt is a singleton.
Case 3. The LP solution is bounded and there are multiple optima.

Zopt is a subset of Rs , which can be bounded or unbounded.

cz = k4

cz = k1

P

(a) Case 1

cT z = k4

cT z = k3

cT z = k1

z∗

P

(b) Case 2

cT z = k4

cT z = k1

z∗

P

(c) Case 3
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Quadratic program (QP)

min
1
2
zTHz + qT z + r

s.t. Gz ≤ d

Cz = b

where z ∈ Rn, H ∈ Rn×n.

• Convex if H � 0 (hard problem if H � 0)
• Let P be the feasible set.

Two cases can occur if P is not empty:

Case 1. The optimizer lies strictly inside the feasible polyhedron
Case 2. The optimizer lies on the boundary of the feasible polyhedron

z'Hz+qz+r= k

P

z* z'Hz+qz+r= k
P

z*
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Standard optimization problems in MPC

Most common MPC problems based on

• Linear system model

• Linear constraints

• Linear norm or quadratic cost

→ Result in linear or quadratic programs

Linear norm vs. quadratic cost:
Linear norm → LP:

• Very easy to solve

• Possibly non-unique solutions

• Minimize ‘quantity’ of something

• Far away from origin: slow action

• Close to the origin: a lot of action,
jumping, dead-beat and nervous
behavior

Quadratic → QP:

• More comp. effort (still easy)

• Unique solution

• Energy arguments

• Relation to LQ control

• Far away from origin: a lot of action

• Close to the origin: smooth action
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Constrained Minimization Problem
Consider the following problem with inequality constraints

min f (z)

s.t. gi (z) ≤ 0, i = 1, . . . ,m

• f , gi convex, twice continuously differentiable

• We assume p∗ is finite and attained

• We assume problem is strictly feasible: there exists a z̃ with

z̃ ∈ domain of f , gi (z̃) < 0, i = 1, . . . ,m

Idea: There exist many methods for unconstrained minimization

⇒ Reformulate problem as an unconstrained problem
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Graphical Illustration

Define function as ∞ if constraints violated.

Optimize a function over a set
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Graphical Illustration

Define function as ∞ if constraints violated.

Optimize a function over Rn
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Barrier method
min

z
f (z) + κφ(z)

Reformulate via indicator function:

φ(z) =

m∑

i=1

I−(gi (z)), κ = 1

where I−(u) = 0 if u ≤ 0 and I− =∞ otherwise (indicator function of R−)

• Augmented cost is not differentiable

Approximation via logarithmic barrier:

φ(z) = −
m∑

i=1

log(−gi (z))

• For κ > 0 smooth approximation of
indicator function

• Approximation improves as κ→ 0

Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x) − (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a
smooth approximation of I−

• approximation improves as t → ∞
u

−3 −2 −1 0 1
−5

0

5

10

Interior-point methods 12–4
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Logarithmic Barrier Function

φ(z) = −
m∑

i=1

log(−gi (z)), domain φ = {z | g1(z) ≤ 0, . . . , gm(z) ≤ 0}

• Convex, smooth on its domain

• φ(z)→∞ as z approaches boundary of domain and of the inequality
constraints

• argminzφ(z) is called analytic center of inequalities g1 < 0, . . . , gm < 0

• Twice continously differentiable with derivatives

∇φ(z) =

m∑

i=1

1
−gi (z)

∇gi (z)

∇2φ(z) =

m∑

i=1

1
gi (z)2

∇gi (z)∇gi (z)T +
1

−gi (z)
∇2gi (z)
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Central Path

• Define z∗(κ) as the solution of

min
z

f (z) + κφ(z)

(assume minimizer exists and is unique for each κ > 0)

• Barrier parameter κ determines relative weight of objective and barrier

• Barrier ‘traps’ z(κ) in strictly feasible set

• Central path is defined as {z∗(κ) | κ > 0}
• For given κ can compute z∗(κ) by solving smooth unconstrained
minimization problem

• Intuitively z∗(κ) converges to optimal solution as κ→ 0
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Example: Central path for an LP

min cT z

s.t. aT
i x ≤ bi , i = 1, . . . , 6

x ∈ R2, c points up

κ = 1000

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

κ = 1

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

κ = 1/5

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5

κ = 1/100

Example: central path for LP

x ∈ R2, A ∈ R6×2, c points up

••

••

•
•

t = 0 t = 1

t = 5 t = 8

t = 10 t = 100

Sequential unconstrained minimization 9–5
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Path-following Method

Idea: Follow central path to the optimal solution

Solve sequence of smooth unconstrained problems:

z∗(κ) = argminz f (z) + κφ(z)

• Assume current solution is on the central path z (k) = z∗(κ(k))

• Update κ(k+1) by decreasing κ(k) by some amount

• Solve for z∗(κ(k+1)) starting from z∗(κ(k))

• If method converges, it converges to the optimal solution, i.e., z (k) → z∗

for κ→ 0
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Barrier Interior-point Method

min
z
{f (z) | g(z) ≤ 0}

Input: strictly feasible z , κ := κ(0), 0 < µ < 1, tolerance ε > 0
repeat
1. Centering step: Compute z∗(κ) by minimizing

f (z) + κφ(z) starting from z

2. Update z := z∗(κ)

3. Stopping criterion: Stop if mκ < ε

4. Decrease barrier parameter: κ := µκ

• Several heuristics for choice of κ(0) and other parameters1

• Terminates with f (z∗)− p∗ ≤ ε
• Steps 1-4 represent one outer iteration

• Step 1: Solve unconstrained minimization problem

1More details in Convex Optimization, S. Boyd and L. Vandenberghe
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Barrier Interior-point Method

min
z
{f (z) | g(z) ≤ 0}

Input: strictly feasible z , κ := κ(0), 0 < µ < 1, tolerance ε > 0
repeat
1. Centering step: Compute z∗(κ) by minimizing

f (z) + κφ(z) starting from z

2. Update z := z∗(κ)

3. Stopping criterion: Stop if mκ < ε

4. Decrease barrier parameter: κ := µκ

• Several heuristics for choice of κ(0) and other parameters1

• Terminates with f (z∗)− p∗ ≤ ε
• Steps 1-4 represent one outer iteration

• Step 1: Solve unconstrained minimization problem

1More details in Convex Optimization, S. Boyd and L. Vandenberghe
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Example - Quadratic Program

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

Optimal point Initial point

Analytic center

Introduction to Convex Optimization 3–39 Model Predictive Control ME-425



Outline

1. Optimization in MPC

2. Main Concepts

3. Convex Optimization

4. Linear and Quadratic Programming

5. Constrained Minimization: Interior-point Methods

• Concept

• Unconstrained Minimization
• Barrier Interior-Point Method

6. Summary of Exercise Session

Introduction to Convex Optimization 3–40 Model Predictive Control ME-425



Optimality Conditions for Unconstrained Problems

Consider the unconstrained optimization problem

min
z

f (z) with f : Rz → R
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Optimality Conditions for Unconstrained Problems

Consider the unconstrained optimization problem

min
z

f (z) with f : Rz → R

Theorem: Necessary condition

Assume f (·) differentiable at z∗. If z∗ is a local minimizer,
then ∇f (z∗) = 0.

Theorem: Sufficient condition

Assume that f (·) is twice differentiable at z∗. If ∇f (z∗) =
0 and the Hessian of f (z) at z∗ is positive definite, i.e.
∇2f (z∗) � 0, then z∗ is a local minimizer.

Theorem: Necessary and sufficient condition

Assume f (·) differentiable at z∗. If f is convex, then z∗ is a
global minimizer if and only if ∇f (z∗) = 0.

f (z)
�f (z)

�f (z�) = 0

f (z)

�2f (z�) � 0

�2f (z�) � 0

f (z)

�f (z�) = 0

For more details and proofs see, e.g., M.S. Bazaraa, H.D. Sherali, and C.M. Shetty.
Nonlinear Programming Theory and Algorithms. John Wiley & Sons, Inc., New York, 1993.
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Unconstrained Minimization
min

z
f (z) with f : Rz → R

• f convex, twice continuously differentiable

• We assume optimal value p∗ = minz f (z) is attained (and finite)

Unconstrained minimization methods

• Generate sequence of points z (k) in domain of f with

f (z (k))→ p∗ for k →∞

• Can be interpreted as iterative methods for solving optimality condition

∇f (z∗) = 0

(nonlinear set of equations, usually no analytical solution)
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Descent Methods
z (k+1) = z (k) + t(k)∆z (k) with f (z (k+1)) < f (z (k))

• ∆z is the step or search direction

• t is the step size or step length

• f (z (k+1)) < f (z (k)), i.e., ∆z is a descent direction

• There exists a t > 0 such that f (z (k+1)) < f (z (k)) if ∇f (z)T ∆z < 0

Introduction to Convex Optimization 3–44 Model Predictive Control ME-425



Descent Methods
z (k+1) = z (k) + t(k)∆z (k) with f (z (k+1)) < f (z (k))

• ∆z is the step or search direction

• t is the step size or step length

• f (z (k+1)) < f (z (k)), i.e., ∆z is a descent direction

• There exists a t > 0 such that f (z (k+1)) < f (z (k)) if ∇f (z)T ∆z < 0

General descent method:
Input: starting point z ∈ domain of f
repeat
1. Compute a descent direction ∆z

2. Line search: Choose step size t > 0 such that f (z + t∆z) < f (z)

3. Update z := z + t∆z
until stopping criterion is satisfied
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Descent Directions
Lots of ways to choose descent directions:

• Gradient descent: ∆z := −∇f (z)

∇f (z)T ∆z = −∇f (z)T∇f (z) = −‖∇f (z)‖ < 0

Tends to be too aggressive (zig-zagging).

• Direction as function of several previous gradients:
Conjugate gradient method
Fast gradient method

Much better, but still limited

• Best: Newton method

∆z = −∇2f (z)−1∇f (z)

Cost: Must invert the Hessian
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Newton’s Method
∆znt = −∇2f (z)

−1∇f (z)

• Interpretation: z + ∆znt minimizes second order approximation

f̂ (z + v) = f (z) +∇f (z)T v +
1
2
vT∇2f (z)v

Optimality condition: ∇f̂ (z +v ∗) = 0

∇f (z) +∇2f (z)v ∗ = 0

⇒ ∇2f (z)v ∗ = −∇f (z)

(z, f (z))

(z + �znt , f (z + �znt))

• Decent direction:

∇f (z)T ∆znt = −∇f (z)T∇2f (z)−1∇f (z) < 0

f convex implies that ∇2f (z) � 0

• If z is close to optimum, ‖∇f (z)‖2 converges to zero quadratically
(extremly quickly)
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Line-search
Choose step size t > 0 such that f (z + t∆z) < f (z)

t? = argmint>0 f (z + t∆z)

f is convex, and so f (z + t∆z) is a single-variable convex function in t.

Options:
• Solve exactly using bisection search

Time consuming, requires many evaluations of f

• Solve very approximately using backtracking search
Much faster, step size very rough
Accuracy doesn’t usually matter much
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Barrier Interior-point Method

min
z
{f (z) | g(z) ≤ 0}

Input: strictly feasible z , κ := κ(0), 0 < µ < 1, tolerance ε > 0
repeat
1. Centering step: Compute z∗(κ) by minimizing

f (z) + κφ(z) starting from z

2. Update z := z∗(κ)

3. Stopping criterion: Stop if mκ < ε

4. Decrease barrier parameter: κ := µκ

• Several heuristics for choice of κ(0) and other parameters1

• Terminates with f (z∗)− p∗ ≤ ε
• Steps 1-4 represent one outer iteration

• Step 1: Solve unconstrained minimization problem

1More details in Convex Optimization, S. Boyd and L. Vandenberghe
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Centering Step using Newton’s Method

Centering Step: Compute z∗(κ) by solving

min
z

f (z) + κφ(z)

Apply algorithm of general descent method:

Input: starting point z ∈ domain of f
repeat
1. Compute descent direction ∆z

2. Line search: Choose step size t > 0 such that f (z + t∆z) < f (z)

3. Update z := z + t∆z
until stopping criterion is satisfied

with

• Descent direction: Newton direction

• Line search: Adapt to satisfy inequality constraints
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Centering Step using Newton’s Method

Newton direction:

• ∆znt minimizes second order approximation

f̂ (z + v) =f (z) + κφ(z) +∇f (z)T v + κ∇φ(z)T v

+
1
2
vT∇2f (z)v +

1
2
κvT∇2φ(z)v

• Newton direction for barrier method is given by solution of

(∇2f (z) + κ∇2φ(z))∆znt = −∇f (z)− κ∇φ(z)

Line search: Consists of two steps:

• Find tmax = argmax0≤t≤1{t | g1(z + t∆z) < 0, . . . , gm(z + t∆z) < 0}
• FInd t∗ = argmint≥0{f (z + t∆z)}

both either solved exactly or through backtracking.
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Newton step for Quadratic Programming

min
z
{1
2
zTHz | Gz ≤ d}

• Barrier method:

min
z

f (z) + κφ(z) = min
z

1
2
zTHz − κ

m∑

i=1

log(di − giz)

where g1, . . . , gm are the rows of G .
• The gradient and Hessian of the barrier function are:

∇φ(z) =

m∑

i=1

1
di − giz

gT
i ,∇2φ(z) =

m∑

i=1

1
(di − giz)2

gT
i gi

• Newton step:

(∇2f (z) + κ∇2φ(z))∆znt = −∇f (z)− κ∇φ(z)

(H + κ

m∑

i=1

1
(di − giz)2

gT
i gi )∆znt = −Hz − κ

m∑

i=1

1
di − giz

gT
i
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Barrier IPM for Quadratic Programming

min
z
{1
2
zTHz | Gz ≤ d}

Input: strictly feasible z , κ := κ(0), 0 < µ < 1, tolerance ε > 0
repeat
1. Centering step:

2. repeat
2.1 Compute search direction ∆z :

(H + κ

m∑
i=1

1
(di − giz)2

gT
i gi )∆z = −Hz − κ

m∑
i=1

1
di − giz

gT
i

2.2 Line search: Choose step size t > 0

2.3 Update z := z + t∆z

3. until stopping criterion is satisfied

4. Decrease barrier parameter: κ := µκ

until mκ < ε
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Remarks on Barrier Method

• Choice of µ involves trade-off: small µ few outer iterations, but more inner
iterations to compute z (k+1) from z (k) (typical values µ = 0.1− 0.05)

• Good convergence properties for a wide range of parameters µ
Example: LP with 100 inequalities, 50 variables

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations
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• starts with x on central path (t(0) = 1, duality gap 100)

• terminates when t = 108 (gap 10−6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for µ ≥ 10

Interior-point methods 12–13

(Note that the µ shown here in the plots is 1/µ from the lectures)
• Barrier method requires strictly feasible initial point
Phase I method, e.g., minz ,s{s | g(z) ≤ s}

• Barrier method can be similarly applied to problems with additional equality
constraints
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Barrier Interior-point Method

min
z
{f (z) | g(z) ≤ d , Cz = b}

Input: strictly feasible z , κ := κ(0), µ > 1, tolerance ε > 0
repeat
1. Centering step: Compute z∗(κ) by minimizing

f (z) + κφ(z) subject to Cz = b starting from z

2. Update z := z∗(κ)

3. Stopping criterion: Stop if mκ < ε

4. Decrease barrier parameter: κ := µκ

• Several heuristics for choice of κ(0) and other parameters2

• Terminates with f (z∗)− p∗ ≤ ε
• Steps 1-4 represent one outer iteration

• Step 1: Solve unconstrained minimization problem

2More details in Convex Optimization, S. Boyd and L. Vandenberghe, 2004
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Centering Step using Newton’s Method

Centering Step: Compute z∗(κ) by solving

min f (z) + κφ(z)

s.t. Cz = d

• Newton step ∆znt for minimization with equality constraints is given by
solution of

[
∇2f (z) + κ∇2φ(z) CT

C

] [
∆znt

ν

]
= −

[
∇f (z) + κ∇φ(z)

0

]

• Same interpretation as Newton step for unconstrained problem:
z + ∆znt minimizes second order approximation

min ∇f (z)T v + κ∇φ(z)T v +
1
2
vT∇2f (z)v +

1
2
κvT∇2φ(z)v

s.t. Cv = 0
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Recap: Interior-point Methods

Barrier method
• Intuition: Follow central path to the optimal solution

• Log barrier function ensures satisfaction of inequality constraints

• Unconstrained or equality constrained problems can be solved efficiently
using Newton’s method

‘Modern’ methods: Primal-dual methods
• Often more efficient than barrier method, can exhibit better than linear
convergence

• Cost per iteration same as barrier method

• Allow for infeasible start (w.r.t. both equality and inequality constraints)

• Most efficient in practice: Mehrotra’s predictor-corrector method3

Interior-point methods are very efficient for range of optimization problems,
e.g. LPs, QPs, second-order cone programs, semidefinite programs.

3See, e.g., Numerical Optimization, J. Nocedal and S. Wright, 2006 Springer
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How Fast?
Time per iteration for MPC problem on desktop PC.
Total time will be ∼ 10× slower.
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[A. Domahidi, A.U. Zgraggen, M.N. Zeilinger, M. Morari and C.N. Jones, 2012]
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Exercise Session #2

Implement the barrier method for the QP

min
z

1
2
zTHz + qT z

s.t. Gz ≤ d

Download code from moodle

Exercises:

1. Compute the search direction and complete the implementation of the
barrier method.

2. Investigate relationship between problem and tuning parameters and
convergence rate.
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